Littlewood–Paley–Rubio de Francia inequality for the Walsh system

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dedicated to the Memory of Jose Luis Rubio De Francia

In this paperwe prove that the /~.,-cube can be (1 + s)-embedded into any 1 -subsyntmetrie C(s>n.dimensional normed space. Marcus and Pisier in [5]iniciated tite study of tite geometry ob finite metric spaces. Bourgain, Milman and Wolbson introduced a new notion of metnc type and developed tite non-linear titeory of Banacit spaces (see [2]and [7]). AII titese themes have been studied more inten...

متن کامل

Proof of a conjecture of José L . Rubio de Francia

Given a compact connected abelian group G, its dual group Γ can be ordered (in a non-canonical way) so that it becomes an ordered group. It is known that, for any such ordering on Γ and p in the range 1 < p < ∞, the characteristic function χI of an interval I in Γ is a p−multiplier with a uniform bound (independent of I) on the corresponding operator SI on Lp(G). In this note it is shown that, ...

متن کامل

Asymptotic Expansion for the Lebesgue Constants of the Walsh System

Let Lk denote the Lebesgue constants of the Walsh system. The following exact result is established by means of Mellin transforms: ∑ 1≤k<n Lk = n 4 log2 n+ nF (log2 n)− Ln 2 , for n ≥ 1, where F (u) is a continuous periodic function with period 1 whose Fourier coefficients can be explicitly expressed in terms of Riemann’s zeta function. This improves an old result of Fine.

متن کامل

a cauchy-schwarz type inequality for fuzzy integrals

نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.

15 صفحه اول

The Littlewood–paley–rubio De Francia Property of a Banach Space for the Case of Equal Intervals

are well known. When {Ij}j∈Z is the collection of dyadic intervals, i.e., I0 = {0} and Ij = sgn(j)[2 , 2) for |j| > 0, the estimate (1.2) is the classical Littlewood–Paley inequality which is valid (as well as the reverse estimate with ≥ in place of ≤) for all p ∈ (1,∞). If the Ij are disjoint intervals of equal length, then (1.2) holds if and only if p ∈ [2,∞); this was first proved by L. Carl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: St. Petersburg Mathematical Journal

سال: 2017

ISSN: 1061-0022,1547-7371

DOI: 10.1090/spmj/1469